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Image-Based Relocalization and Alignment for Long-Term Monitoring of
Dynamic Underwater Environments ==

Beverley Gorry Tobias Fischer

Abstract— Effective monitoring of underwater ecosystems is
crucial for tracking environmental changes, guiding conservation
efforts, and ensuring long-term ecosystem health. However,
automating underwater ecosystem management with robotic
platforms remains challenging due to the complexities of
underwater imagery, which pose significant difficulties for
traditional visual localization methods. We propose an integrated
pipeline that combines Visual Place Recognition (VPR), feature
matching, and image segmentation on video-derived images. This
method enables robust identification of revisited areas, estimation
of rigid transformations, and downstream analysis of ecosystem
changes. Furthermore, we introduce the SQUIDLE+ VPR
Benchmark—the first large-scale underwater VPR benchmark
designed to leverage an extensive collection of unstructured data
from multiple robotic platforms, spanning time intervals from
days to years. The dataset encompasses diverse trajectories,
arbitrary overlap and diverse seafloor types captured under
varying environmental conditions, including differences in depth,
lighting, and turbidity. Our code is available at: https:
//github.com/bev-gorry/underloc.

I. INTRODUCTION

Underwater ecosystems like coral reefs, seagrass beds,
and kelp forests support marine biodiversity, fisheries, and
coastal protection. These underwater habitats are vital but face
growing threats from climate change, pollution, and human
activities such as overfishing and coastal expansion [1], [2].
Long-term monitoring of these habitats is essential to detect
and quantify changes in the distribution and abundance of
different species, helping researchers better understand the
impacts of human activities and improving the long-term
health and resilience of these critical ecosystems [3].

Due to the cost and limitations of diver-based monitoring,
autonomous underwater vehicles offer a scalable alterna-
tive [4]. Equipped with Al and computer vision, they enable
efficient, non-intrusive monitoring with advances in naviga-
tion [5], 3D mapping [6], [7], and image segmentation [8]
for high-resolution data collection.

Reliable multi-year change detection enables long term
monitoring of these dynamic and fragile ecosystems, requir-
ing highly accurate registration to capture centimetre-level
variations in habitats such as coral reefs [9]. In terrestrial
and aerial monitoring scenarios, change detection benefits
from GPS location priors, well-defined landmarks, and many
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Fig. 1. Overview of our image-based relocalization and alignment
method for underwater ecosystem monitoring. We use hierarchical
Visual Place Recognition (VPR) techniques to robustly identify common
locations from images captured across multi-year timescales using video
from freely navigating robots. These images exhibit significant variations in
environmental conditions, such as lighting, turbidity, and depth. We establish
correspondences between image keypoints to estimate a rigid transformation
between the images, which we then use to register segmentation masks in
a common pixel space. Finally, we apply an intersection over union (IoU)
metric to detect ecosystem changes over time.

decades of robotic vision techniques mostly tailored for
these scenarios. However, these methods do not directly
translate to underwater surveys, which must contend with
unique challenges such as limited visibility, optical distortions,
turbidity, caustics, and non-linear light attenuation across
depths.

Early work by Eustice et al. on large-scale hull map-
ping laid the groundwork for underwater Simultaneous
Localization and Mapping (SLAM) techniques, using both
vision-based and sonar-based methods for infrastructure
inspection [10], [11]. These efforts targeted applications like
ship hull inspection [12], oil rig monitoring, and pipeline sur-
veying [13], which, while distinct from ecosystem monitoring,
share challenges related to long-term feature tracking [14],
sensor degradation, and environmental variability [9].

In this paper, we focus on long-term environmental moni-
toring enabled by recent advances in visual place recognition
(VPR) and semantic segmentation. VPR enables autonomous
systems to recognize previously visited locations based on
a set of reference images. While VPR has the potential for
accurate, repeatable localization, we show that current state-
of-the-art techniques are challenged by new, difficult datasets
in the underwater domain, which has received very limited
attention thus far. Our approach requires only a set of pre-
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collected images as a reference — there is no need for SLAM,
Structure-from-Motion (SfM), or geometric mapping. This
makes it simpler and more scalable for long-term monitoring.

As depicted in Figure 1, our system enables cost-effective
and scalable underwater ecosystem monitoring by registering
locations across multi-year timescales using monocular video
from autonomous marine robots. It identifies revisited areas,
estimates rigid transformations, and analyzes visual changes,
even under varying trajectory overlap. By integrating VPR
with feature matching and image warping, our approach
enhances spatial consistency and registration accuracy over
time. While our method builds upon existing techniques, we
are the first to combine them in this manner, enabling critical
monitoring capabilities that are valuable to ecologists.

Finally, we introduce the SQUIDLE+ VPR Benchmark,
the first large-scale benchmark for evaluating underwater
VPR, leveraging publicly available data from SQUIDLE+.
Through extensive experiments, we benchmark state-of-the-
art VPR techniques for underwater environments, advancing
precise registration for long-term ecological monitoring and
improving the reliability, scalability, and effectiveness of
autonomous marine surveys for scientific research and marine
conservation.

II. RELATED WORKS

We review image registration, 3D mapping, and VPR
as key components of long-term underwater ecosystem
monitoring. Traditional image registration (Section II-A)
relies on GPS or multi-sensor SLAM for coarse localization
before alignment refinement, while our approach uses VPR to
efficiently retrieve images from monocular video for precise
registration. In 3D mapping, existing methods propagate
semantic information within a single trajectory, whereas
we extend segmentation across multi-year datasets under
varying conditions (Section II-B). Underwater VPR remains
underexplored, with most techniques designed for structured
terrestrial environments (Section II-C). Finally, we review
underwater localization benchmarking in Section II-D.

A. Image registration for change detection

Delaunoy et al. [9] used SURF features to register and
detect changes in images taken 10 months apart in a small
coral reef scene. Similarly, Williams et al. [15] applied a
stereo-based SLAM technique with SIFT features to co-
register multiple 3D image maps collected by an autonomous
underwater vehicle (AUV) during a grid survey. Their
approach compared the same area over 12 hours, estimating
the AUV’s trajectory across overlapping grid-based surveys.

Bryson et al. [16] advanced multi-year repeat survey
imagery processing and precision registration for monitoring
long-term changes in benthic marine habitats. Post-processing
of stereo imagery and navigation data through SLAM and
3D reconstruction generated a photo-textured model of the
seafloor, orthographically projected into a geo-referenced
mosaic. Their approach included mutual information opti-
mization to improve robustness against variations in color
and brightness across years.

These studies relied on GPS or multi-sensor SLAM
for coarse localization before applying image registration
methods. In contrast, our method efficiently retrieves image
cues from the same location using videos from an uncalibrated
monocular camera. This enables accurate image registration
as required for monitoring applications.

B. 3D Mapping of Coral Reefs

Recent advances in underwater 3D mapping have improved
coral reef reconstruction and semantic interpretation. Sauder
et al. [17] proposed a pipeline to propagate semantic segmen-
tation from images to 3D point clouds estimated via SfM
from single-trajectory video streams. Sethuraman et al. [18]
leveraged neural radiance fields (NeRFs) for physics-informed
novel view synthesis and image restoration, addressing water
column effects like attenuation and backscattering. Wang et
al. [7] combined visual-inertial odometry with real-time 3D
reconstruction to generate dense maps on resource-constrained
AUVs, achieving results comparable to offline methods. Song
et al. [19] introduced TURTLMap, designed for real-time
localization and mapping in low-texture underwater regions.

Unlike these approaches that typically focus on single-
time mapping, require controlled camera paths, or address
specific visibility challenges, our method enables propagation
of semantic segmentation across images captured in different
years under varying conditions with arbitrary trajectory
overlaps. Our pipeline prioritizes image-to-image registration
for direct ecological comparison using only monocular video
input, making it more accessible for practical long-term
monitoring applications.

C. Visual Place Recognition

Despite its potential, underwater VPR remains largely
underexplored and is rarely applied in practical settings.
Most VPR pipelines [20]-[25] are developed and tested in
structured environments, with limited application to unstruc-
tured settings—and almost none for underwater imagery. A
thorough review of terrestrial place recognition techniques is
beyond the scope of this paper, but excellent surveys exist
for the interested reader [26]-[29].

Of interest for this paper are AnyLoc [30], which is one
of the few VPR techniques evaluated on the Eiffel Tower
underwater dataset [31], and MegalLoc [32], a versatile image
retrieval model that achieved state-of-the-art performance in
VPR, visual localization, and landmark retrieval by leveraging
a diverse set of data and training techniques.

Place recognition is often used in a hierarchical pipeline,
where the top K retrieved database images are reranked using
more computationally intensive local feature matching. A
widely used example is hloc [33], which uses NetVLAD [20]
for image retrieval and SuperPoint [34] with SuperGlue [35]
pre-trained on outdoor scenes for local matching.

Several works specifically address place recognition in
underwater environments. Maldonado-Ramirez et al. [36]
propose an unsupervised VPR method using a convolutional
autoencoder to learn compact representations from salient
landmarks detected by a visual attention algorithm. Burguera
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Fig. 2.  GPS trajectories (in meters) and environmental differences across underwater datasets. The visualized trajectories depict query sequences
( ) and database sequences (blue) for four underwater datasets: (a) the Eiffel Tower (2018-2020) from the Mid-Atlantic Ridge hydrothermal vent, (b)
Okinawa (2016-2017-2018), capturing mesophotic coral reef environments before and after Typhoon Trami, (c) the Tasman Fracture (2018), showcasing
deep-sea benthic habitats, and (d) St Helens (2011-2013), featuring images recorded during a transition movement in shallow barren zones. To analyze
the unique overlap between sequences covering the same area but following different trajectories, we include a third trajectory in the Okinawa dataset.
Accompanying RGB image pairs for each trajectory illustrate corresponding locations, highlighting the significant appearance variations that challenge
automated VPR systems. Notably, even correctly matched locations exhibit substantial visual differences due to variations in viewpoint, lighting conditions,

(b) Okinawa 2016-2017-

and actual ecosystem changes over time, further emphasizing the complexity of long-term visual place recognition in underwater environments.

et al. [37] introduce a deep network for fast, robust underwater
loop detection with clustered SIFT features and unsupervised
training. While these methods focus on underwater VPR
and evaluate self-recorded robotic sequences, our approach
is tested on large, publicly available benchmarks covering
diverse sequences, robotic platforms, and camera setups,
aligning more closely with general VPR evaluation.

D. Underwater Localization Benchmarking

Boittiaux et al. [31] introduced the Eiffel Tower dataset,
a deep-sea dataset for long-term visual localization. Fer-
rera et al. [38] presented AQUALOC to support vi-
sual-inertial-pressure SLAM for underwater vehicles, pro-
viding offline trajectories from SfM for comparison with
real-time localization methods.

Joshi et al. [39] proposed a Visual-Inertial SLAM pipeline,
evaluated on an artificial wreck off South Carolina and in
Florida’s caverns and caves. Singh et al. [40] introduced
a dataset for benchmarking refractive camera model esti-
mation, featuring a time-synchronized 5-camera/IMU setup
on a remotely operated vehicle (ROV) in a controlled pool
environment.

Angelakis et al. [41] used animal-borne video and move-
ment data from Australian sea lions to map benthic habitats,
addressing challenges in vessel-based surveys, which are
costly, time-consuming, weather-dependent, and impractical
for deep-sea environments. Joshi et al. [42] presented a 3D
water quality mapping system for shallow waters using a
BlueROV2 with GPS and a water quality sensor, enabling
location correction by resurfacing when errors occur.

In this paper, we make a step towards standardised
benchmarking of VPR methods in underwater scenarios,
akin to efforts in terrestrial VPR [43], [44]. Specifically, we
propose to leverage sequences freely available on https:
//squidle.org/. SQUIDLE+ hosts the largest repository
of openly accessible georeferenced marine images, enabling
the construction of datasets tailored to specific scientific
questions and sourced from various platforms, campaigns, and
globally distributed deployments. By leveraging this vast data
source, our work establishes the foundation for a dedicated

TABLE 1
SQUIDLE+ VPR BENCHMARK ORIGINATES FROM VARIOUS ROBOTIC
PLATFORMS FOLLOWING TRAJECTORIES WITH ARBITRARY OVERLAP,
SPANNING TIME DIFFERENCES RANGING FROM DAYS TO YEARS. THE
DATA INCLUDES DIVERSE SEAFLOOR TYPES CAPTURED UNDER VARYING
SCENE CONDITIONS (E.G., DEPTH, LIGHTING, TURBIDITY).
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underwater VPR benchmark, facilitating the development and
rigorous evaluation of VPR pipelines.

III. TECHNICAL APPROACH

This section details our approach to enable change detection
in underwater scenes using video streams from uncalibrated
monocular cameras.

Given two sequential image sets, @ and D, from a video
stream, we first find the top K matches in D for each
@; using global descriptors obtained via state-of-the-art
VPR techniques [20], [22], [23], [25], [30], [32]. Using
LightGlue [45], we rerank these matches via the inlier count,
and filter out image pairs that have a large reprojection error
to avoid false matches. We then extract semantic segmentation
masks from the matched images, and warp the images using
the homography matrix. We use the intersection-over-union
(IoU) metric to approximate location similarity.

A. Visual Place Recognition — Global Retrieval Stage

We extract image descriptors using standard VPR tech-
niques and compute the similarity matrix by evaluating the
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L2 norm between all image pairs: S(Q, D) € R9*4,

For each query image ();, we select the top K database
images Dj, with the highest similarity scores, forming the
set of initial matches:

MK:{(QH-DIC) |Dk€T0pK(S(QuD)7K)}7 (1)

where TopK(-, K) denotes the function that selects the K
most similar matches.

B. Keypoint Correspondences — Local Refinement Stage

We refine matches by using LightGlue to establish keypoint
correspondences K,q in image space between SuperPoint
features in M

Kqg=1{kq|kq € R3}7 Ka={kal|kaqc R3}7 ()

where k, and k, represent keypoints expressed in homoge-
neous coordinates.

We then re-rank the matches based on the inlier count as
a new similarity measure, selecting the best match per query:

My ={(Qi, D1) | D1 = TopK(inliers(Q;, Dx),1)}. (3)

C. Homography Estimation and Outlier Filtering

From the image correspondences K,q in the best match
subset M, we estimate the homography matrix H €
R3*3 and project the keypoints from one image onto their
corresponding locations in the other. The reprojection error e,
is computed as the mean root-mean-square (RMSE) distance
between keypoints projected onto the opposite image:

1
ep = ———
" 2 |’qu|

||k7q - Hkp||2

D

(kqup)e’ch

>

(kq,kp) € qa

|H ky — kp2>, (4)

where |K,q| denotes the number of matched keypoints. To
account for scale variations—such as when the query image is
a zoomed-in version of the database image or vice versa—we
average bidirectional errors by computing transformations in
both directions.

Finally, we discard image pairs with a reprojection error

greater than y = 10 pixels, ensuring only geometrically
consistent matches are retained:
MX:{<Q’£7D1), eT(QiaDl) SX} (5)

D. 2D Warping of Segmentation Masks

To simulate a potential change detection method for
visual monitoring on the registered image pairs M,, we
automatically extract segmentation masks for each image
using Segment-Anything 2 (SAM2) [46]. For simplicity in
our experiments, all segmented instances within an image
are merged into a single unified mask. We then use the
homography matrix to warp the masks into a common image
space, enabling pixel-level comparison using pixel intersection
over union (IoU) as a similarity proxy.

IV. EXPERIMENTAL SETUP

A. VPR Baselines

For global retrieval, we evaluate state-of-the-art visual
place recognition (VPR) methods implemented in [47],
including MixVPR [25], CosPlace [22], NetVLAD [20],
AnyLoc [30], Megaloc [32], and CricaVPR [23]. While
our pipeline supports all models referenced in [47], we select
this subset due to their strong performance and widespread
adoption in terrestrial VPR. For local feature refinement,
we use SuperPoint [34] keypoints in combination with
LightGlue [45].

To assess whether the retrieval results, based on GPS-
derived ground truth, correspond to meaningful place recog-
nition, we compare the evaluated VPR methods against
a random guesser, which serves as a lower performance
bound. The random guesser is implemented as a Monte Carlo
experiment: for each query image @);, we randomly select
K database matches, repeating this selection n times per
query. The Recall @K metric is then defined as the proportion
of iterations where at least one correct match was retrieved
among the K selected database images, normalized by the
total number of trials, |@Q| - n, where |@| is the number of
query images and n is chosen to be sufficiently large. To
establish an upper performance bound, we employ a brute-
force baseline that performs exhaustive local feature matching
on every query-database image pair using LightGlue. In this
case, the number of keypoint matches serves as the similarity
measure between image pairs.

B. SQUIDLE+ VPR Benchmark

In this work, we propose using data from SQUIDLE+ to
advance underwater VPR by leveraging a vast collection
of unstructured data. This dataset originates from various
robotic platforms executing diverse trajectory patterns with
arbitrary overlap, spanning time differences ranging from days
to years. The data includes diverse seafloor types captured
under varying out-of-distribution conditions of the scene (e.g.,
depth, lighting, turbidity).

Table I provides details of the selected sequences, while
Figure 2 illustrates the robot trajectories and presents sample
RGB images depicting the scene variations.

We process the sequences by selecting only those captured
with downward-looking cameras, the most common setup
for exploring seafloor environments. This distinguishes our
benchmark from most datasets in structured environments
captured with forward-facing cameras, where the majority of
VPR techniques are trained [30], making it more comparable
to aerial datasets [48].

To ensure consistent processing times across datasets, we
downsample the RGB images to a resolution of approximately
640x480 pixels, adjusted to maintain the original aspect ratio.
We include AUV sequences with GPS signals to evaluate our
retrieval pipeline using an image-independent ground truth
for visual localization assessment [49].

Our dataset includes the following sequences:
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Fig. 3. Recall@K performance for VPR methods across underwater datasets. Experimental results illustrating the probability that a correct match
appears within the top K retrieved candidates. We compare six VPR methods—MixVPR, CosPlace, NetVLAD, AnyLoc, Megaloc, and CricaVPR—against
a random guesser to assess whether the retrieval results, given our GPS-based ground truth, correspond to meaningful location identification. Additionally,
we include the brute-force SuperPoint approach (which performs feature matching on all possible image pairs) to establish an upper performance bound. T
In the Okinawa dataset, the random guesser’s performance approaches that of VPR methods for K 2 10 due to the lawnmower trajectory pattern (see
Fig. 2), which increases image density. This allows random selection to occasionally retrieve correct matches, even without visual correspondence. While
this does not compromise the GPS-based ground truth, it underscores that VPR methods are most discriminative at lower K values (see Section V-A). ¥
Due to its significantly higher computational cost, we do not include the SuperPoint brute-force approach in the St Helens dataset.

TABLE II
RECALL@K PERFORMANCE FOR VPR METHODS ACROSS UNDERWATER DATASETS. WE USE GREEN TO HIGHLIGHT THE BEST R @ 1) RESULT FOR
EACH DATASET AND ORANGE FOR THE RESULT EXCLUDING SUPERPOINT BRUTE-FORCE. ANYLOC, MEGALOC, AND CRICAVPR
PERFORM COMPARATIVELY. WE CHOSE MEGALOC FOR SUBSEQUENT EXPERIMENTS AS IT IS SIGNIFICANTLY FASTER THAN ANYLOC AND PERFORMS
SLIGHTLY BETTER THAN CRICAVPR ON AVERAGE. T WE COMPARE RESULTS USING R@ 10, AS THIS IS THE LARGEST VALUE THAT PROVIDES
MEANINGFUL COMPARISONS GIVEN THE GPS-BASED GROUND TRUTH (SEE EXPLANATION IN FIGURE 3).

Eiffel Okinawa 2016-2017 Okinawa 2017-2018 Tasman Fracture St Helens

Methods R@l R@5 R@10 R@l R@5 R@I0 R@l R@5 R@I0 R@! R@5 R@I0 R@l R@5 R@I0
MixVPR 19.2 39.7 49.5 21.9 52.6 70.9 25.3 55.8 69.5 15.5 38.5 51.1 75 19.8 29.9
CosPlace 15.2 32.5 425 27.5 51.1 64.3 22.8 49.5 63.4 20.5 359 45.6 6.9 21.2 31.4
NetVLAD 5.2 174 25.8 259 56.8 73.1 22.7 53.1 69.2 13.8 29.7 439 4.6 14.7 23.8
AnyLoc 18.6 38.7 48.3 46.1 73.8 83.3 34.3 60.1 70.6 19.3 414 56.0 10.3 26.4 37.9
MegaLoc 337 55.1 65.1 472 72.0 40.2 63.9 73.0 18.4 36.8 48.5 9.5 25.6
CricaVPR 25.1 47.7 32.6 59.5 73.1 37.2 60.2 23.8 427 9.3 234 33.5
Superpoint Brute-Force ~ 28.9 54.3 63.1 19.6 51.5 71.3 43.8 61.3 71.8 5.9 21.3 30.5 - - -

TABLE III

Tasman Fracture?: This dataset consists of benthic stereo
still imagery collected to map the distribution of epibenthic
fauna and habitats on seamounts off Tasmania [51]. The
imagery was acquired at a depth of 885 meters over a two-
day period using a deep-towed camera.

St Helens®: This dataset comprises benthic stereo-imaging

AVERAGE COMPUTATION TIME PER QUERY (MS) FOR EACH VPR
METHOD. ALL ONE-STAGE VPR TECHNIQUES ARE SIGNIFICANTLY
FASTER THAN THE BRUTE-FORCE SUPERPOINT APPROACH. OUR
HIERARCHICAL METHOD, COMBINING MEGALOC AND SUPERPOINT, IS
X100 FASTER THAN BRUTE-FORCE SUPERPOINT.

Methods Avg. Time per Query (ms) surveys conducted with the AUV Sirius to monitor long-
MixVPR 8 term urchin population dynamics in St Helens, northeast
CosPlace 14 Tasmania [52]. As part of a bi-yearly monitoring program,
ﬁity\ﬁ(‘)?]) 42218 the AUV surveyed shallow barren/kelp transition zones, which
MegaLoc 49 are included in our benchmark.

CricaVPR 38 We include the Eiffel Tower* [31] dataset alongside
SuPerpomtB ________________ 2 7150 _______ the SQUIDLE+ sequences to provide a curated reference
AnyLoc + Superpoint-H 49 + 226 specifically designed for benchmarking long-term underwater

visual localization. The dataset consists of images captured
during four visits to the same hydrothermal vent edifice over a
five-year period. Camera poses and a common scene geometry
were estimated using navigation data and SfM. In contrast
to [30], where only a small subset of images was used (~1%),
we incorporate entire sequences for a more comprehensive

Okinawa': This dataset captures the mesophotic coral
seafloor off Sesoko Island, near Okinawa, over a two-year
period using the AUV Tuna-Sand [50]. The 2018 sequence
was recorded days after impact from Typhoon Trami (Paeng).
Visual changes from damage to the environment hinder
relocalization, emphasizing the need for a robust pipeline 2ttps://data. csiro.au/collect ion/60886

to document damage and recovery. 3https://www.researchgate.net/publication/294422138_
Stereo-imaging_AUV_detects_trends_in_sea_urchin_abundance_
on_deep_overgrazed_reefs

Ihttps ://oceanperception.com/impact/expeditions/ 4https ://www.seanoe.org/data/00810/92226/
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Fig. 4. Top row: Precision-Recall curves for Best-Single-Match VPR. The

(c) Okinawa 2017-2018

5454
(e) St Helens 2011-2013

1307
(d) Tasman Fracture 2018/12/04-06

method outperforms one-stage VPR approaches, achieving

performance closer to the SuperPoint brute-force approach while significantly reducing computational cost (see Table III). Bottom row: The background
represents the binary ground truth in black and white, with green crosses indicating true positives and red crosses indicating false positives for the best match
per query using the SuperPoint-H method. Positive matches are filtered to exclude those with a reprojection error greater than 10 pixels, corresponding to a
precision of 39% for the Eiffel Tower dataset, 99% for Okinawa, 22% for Tasman Fracture, and 72% for St Helens.

evaluation.

For all sequences, we obtain the ground truth matrix where
each pair of images is considered to depict the same place if
their spatial distance is smaller than a predefined localization
radius (see Table I).

C. Evaluation Metrics

We assess VPR methods using established metrics, as
they are widely recognized in the field and provide a clear
framework for evaluating performance. This approach enables
us to contextualize the behavior of the methods within the
standards of the research community while also highlighting
their effectiveness on challenging underwater datasets.

Recall@K: The probability that at least one of the top K
matches, ranked by similarity for a given query, is a correct
match (i.e., a true positive).

Precision-Recall Curves: A precision-recall curve evalu-
ates VPR performance when considering only the highest-
ranked match per query. This analysis highlights the trade-off
between precision and recall, providing insights into the
reliability of the top-ranked match in correctly identifying
revisited locations.

V. RESULTS AND DISCUSSION
A. Hierarchical Image Retrieval

Global Retrieval Stage. Figure 3 illustrates the Recall@K
performance for eight baselines, including the random guesser
and brute-force SuperPoint approach (see Section IV-A).

A notable observation in the Okinawa dataset is that
for K 2 10, the random guesser’s performance begins to
approach that of specialized VPR methods. This phenomenon
stems from the structured lawnmower trajectory pattern (see
Figure 2), which creates a high spatial density of images. In
such dense patterns, even random selection can occasionally
retrieve images within our defined localization radius, despite
lacking the visual correspondence that VPR methods identify.
This does not indicate an issue with our ground truth, but

rather demonstrates that for highly structured survey patterns,
the discriminative advantage of VPR methods is most evident
at lower K values. The precision-recall curves in Figure 4
further illustrate this distinction, showing that VPR methods
achieve substantially higher precision than random selection
when evaluating the highest-ranked matches.

Table II highlights the best Recall@10 results and the

for each dataset, providing a comparative as-
sessment across methods. Megal.oc is significantly faster
than AnyLoc and performs slightly better than CricaVPR
on average. We use R@10 for evaluation, as higher values
introduce ambiguity due to the limitations of GPS-based
ground truth, as discussed above.

Brute-force SuperPoint establishes an upper bound for
retrieval performance across almost all datasets but incurs a
significantly higher computational cost. Given this overhead,
brute-force SuperPoint is excluded from experiments on the
St Helens dataset.

Local Refinement Stage. Based on prior experiments, we
select Megal.oc as the global image retrieval method in our
hierarchical approach. Figure 4 shows precision-recall curves
for the best single-match results across eight baselines. Our
hierarchical method, combining MegalLoc with SuperPoint,
achieves performance comparable to brute-force SuperPoint
(average precision of 16% for our hierarchical method vs 18%
for brute-force) while significantly reducing computational
overhead (x100 faster). A key advantage is its ability to
first narrow down candidate matches before feature-based
refinement, yielding substantial computational savings (see
Table III).

The bottom row of Figure 4 illustrates the ground truth
evaluation, where correctly identified matches are marked in
green and false positives appear in red. To ensure reliable
evaluation, we threshold with reprojection errors smaller than
10 pixels for a match to be considered valid. This filtering
results in precision levels of 39% for the Eiffel Tower dataset,
99% for Okinawa, 22% for Tasman Fracture, and 72% for



Okinawa

Tasman Fracture

St. Helens

Fig. 5. Qualitative results of warping segmentation masks and
reprojection error, accompanied by intersection over union (IoU) scores
for aligned masks. Leftmost column: Query RGB images from each
SQUIDLE+ dataset overlaid with SAM2 segmentation masks. Second
column: Database match obtained using our MegalLoc + SuperPoint
hierarchical method, overlaid with SAM2 segmentation masks. Third
column: Query images warped onto the selected database image using
the homography estimated from LightGlue keypoints. Actual keypoints from
the database image are plotted as blue circles, while projected keypoints
from the query image are shown as orange crosses. The

is marked with a yellow dashed line. Rightmost column: Query masks
warped using the estimated homography and overlaid onto the database
masks. Areas of intersection are colored in green, while non-overlapping
query and database masks remain orange and blue, respectively.

St Helens.

To quantify computational efficiency, Table III presents the
average computation time per query for each VPR method.
By combining Megal.oc with SuperPoint in a hierarchical
fashion, our method achieves x 100 speedup over the brute-
force SuperPoint approach, demonstrating a favorable trade-
off between accuracy and efficiency. All experiments were
conducted on a Dell Precision 3680 Tower equipped with an
NVIDIA RTX 4090 GPU.

B. Segmentation Warping & Qualitative Results

Figure 5 presents the results of warping segmentation masks
generated with SAM?2 using the homography transformation
estimated from LightGlue keypoint correspondences. We
evaluate the alignment between the two warped masks using
an intersection over union (IoU) metric, where the intersection
is defined as the number of shared pixels between the query
and database masks, and the union represents the total number
of pixels covered by both masks in the warped image.

This simple evaluation provides a qualitative comparison,
demonstrating how a change detection method for underwater
ecosystem monitoring can be seamlessly integrated with
our image-based registration approach. However, certain
limitations affect the accuracy of our change detection: (1)

inconsistencies in the segmentation results, (2) the inability
to differentiate between warping inaccuracies, appearance
changes, and actual structural modifications in the scene.

Qualitative observations reveal that scenes with minimal
changes, such as the rocky environment in St Helens, achieve
higher IoU values. In contrast, the significant appearance
changes caused by Typhoon Trami in the Okinawa sequence
result in lower IoU values, capturing the impact of environ-
mental disturbances. Finally, the Tasman Fracture sequence
demonstrates the capability of our approach to register images
despite strong viewpoint variations. However, these variations
also introduce inconsistencies in image segmentation, leading
to further reductions in IoU scores. This highlights the
potential of combining our approach with more streamlined
comparison methods to enable change detection under extreme
viewpoint changes.

VI. CONCLUSIONS AND FUTURE WORK

We present the first comprehensive benchmark for VPR in
underwater environments, addressing a key gap in long-term
marine monitoring. Our hierarchical approach, combining
global descriptors with local feature refinement, achieves
robust performance across diverse underwater scenes over
time spans from days to years. Furthermore, precise image
registration enables pixel-level comparison between tempo-
rally separated observations—critical for marine conservation,
where the vast scale of underwater habitats makes manual
assessment impractical.

Future work will focus on fully automating the bench-
marking process by leveraging all available resources within
SQUIDLE+, enabling the most extensive evaluation of
underwater localization pipelines to date. Futhermore, we
motivate the development of reliable temporal maps integrated
with automatic change detection tools, ensuring scalable and
efficient monitoring of underwater ecosystems.
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